

Clinical Translational Laser Spectroscopy for an Improved Cancer Diagnosis and Therapy

Juergen Popp^{1,2}

- 1) Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Germany
- 2) Leibniz Institute of Photonic Technology Jena a member of the Leibniz Research Alliance Leibniz Health Technology, Germany

Today's standard diagnostics

- Clinical examination
- White light endoscopy and microscopy
- Medical Imaging (Ultrasound, CT, MRT, SPECT, PET etc.)

MRT = Magnetic resonance tomography MRS = Magnetic resonance spectroscopy CT = Computer tomography SPECT = *single photon emission computed tomography* PET = Positron-Emissions-Tomography

Images courtesy Prof. Dr. Orlando Guntinas Lichius

Pre-, intra-, post-operative imaging

Needs in all scenarios: screening, therapy, follow-up

- Better visualization of the tumor
- Better discrimination from normal surrounding
- Better discrimination of cancer from precancerous lesions and chronic inflammation
- Detection in earlier stage
- Less sampling error
- Online guidance during surgery
- Monitoring during therapy
- Help during follow up

Label-free multimodal / multispectral imaging

- Properties of most important biophotonic imaging techniques with respect to:
 - Penetration depth
 - Spatial resolution
 - Molecular specificity
 - Speed
- Various methods are necessary in order to achieve multivariate molecular contrast as well as morphological information

⇒ Multimodal imaging

CRS: coherent Raman scattering PAT: photoacoustic tomography OCT: optical coherence tomography DOT: diffuse optical tomography SHG: second-harmonic generation; TPEF: two-photon excited fluorescence ETC.

Biophotonic imaging approaches – where do we stand?

- 1. Combination of fast imaging techniques (e.g. FLIM, OCT) with slow but molecular specific approaches e.g. Raman
 - ⇒ linking a large field of view of morphological information with a richness of molecular detail of selected points or confined areas

- 2. Multi-contrast imaging utilizing imaging approaches with similar image acquisition times
 - ⇒ Combination of imaging modalities requiring similar experimental equipment:
 e.g. CARS, SRS , TPEF, SHG, FLIM

Egodage *et al.* COC, 2017, 15, 090008.

Bladder Cancer – Intraoperative Staging and Grading

Compact fiber probe-based setup for Raman mapping

Imaging of bladder cancer using OCT and Raman spectroscopy

Placzek et al, Analyst 2020, 145, 1445–1456.

Modalities provide comprehensive information and enable to understand the underlying origins

JENA

Innovation transforming healthcare

hotonics

MIB-H2020.eu

Translation to *In-Vivo* Investigations.

Plug-and-Play Raman-probe for clinical applications

Leibniz **ipht** 🔿

- Mechanically robust, medical grade components and sterilizable
- No alignment
- Bending radius 1,5 cm
- Preparation of documentation according to MDR2017/745 for an in vivo clinical investigation FRIEDRICH-SCHILLER-UNIVERSITÄT

17

Raman-invaScope: a device for label-free non-destructive in vivo diagnostics

- Designed for the clinical application and high and reproducible performance
- Build on a medical cart for easy access to the surgery room
- Medical-graded computer and interface components designed for clinical applications
- Acquisition is simply performed by pressing a food switch
- Emergency button allows to shutdown the device immediately
- Excitation power is always monitored to ensure a safe working environment and to prevent overexposure of the patient
- Intuitive software to control the data acquisition and visualization
- All important information rapidly at hand

18

User can be trained in a short amount of time

Ex-Vivo and In-Vivo Tumor Border Detection or Disease State Activity by Multimodal Non-Linear Imaging

Non-linear multimodal Imaging

Heuke *et al.* British Journal of Dermatology, 2012, 169, 794. Heuke *et al.* Healthcare, 2013, 1, 64. Meyer et al. Head & Neck, 2013 35, E280. Heuke et. al. Head & Neck, 2016 DOI 10.1002/HED.

Fair Skin Cancer

00 µm

Larynx Cancer

500

SHG

CARS

Bocklitz et al. BMC Cancer, 2016, 16, 534. Chernavskaia et al. Scientific Reports, 2016, 6:29239.

250 un

Colon Cancer / Inflammatory Bowel Disease

Photonic data Science needed to interpret the complex multimodal images

Head and Neck Cancer

jena**photonics**"

Prediction of tissue type by linear discriminant analysis

Examples of correct predictions of cancer

Prediction Groups

- Epithelial Tissue
- Background

other

Diagnosis Groups

- Inflamed Area
- Grandular Tissue
- Adipose Tissue
- Vascular Tissue
- Keratinisation
- Necrosis
 - Muscle Fibre Bundles
 - Cartilage

Leibniz **ipht**)

23 Heuke et al. Head & Neck 2016, DOI 10.1002/hed.24477

Multimodal intraoperative cryosection diagnosis in head and neck surgery HE section in bad quality

Needs an experienced pathologist

- Long time in operative theater
- Huge workload

Multimodal Cryosection

Standard Cryosection

- Automatic prediction of tissue types / disease
- Shorter time in operative theater due to instant feedback
- Smaller workload due to automatization

24

Translation to *In-Vivo* Investigations.

Endoscopic probes for multimodal endoscopy for direct disease assessment without tissue removal microscopy

Zirak, P., et al., Invited Article: A rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view. APL Photonics, 2018. 3(9): p. 092409. Lukic, A., et al., Fiber probe for nonlinear imaging applications. Journal of Biophotonics, 2016. 9(1-2): p. 138-143. Lukic, A., et al., Endoscopic fiber probe for nonlinear spectroscopic imaging. Optica, 2017. 4(5): p. 496-501.

rfägårdh, J., et al., Laba microscopy through a mu endoscope. Optics Expres 30055-30066.

DCDC-Fiber for laser delivery and signal collection

activefiber

FBGS

Pump ~800nm Stokes ~1030nm Double clad signal collection

Grating is used to overlay pump and Stokes

Integrated endoscopic fiber probe in coupling unit

Multimodal images of pig brain and sheep dura

Multimodal images of Galleria mellonella Larvae worm

nhotonics

Image Guided Laser Surgery

Combining multimodal nonlinear imaging & fs-laser ablation for image guided surgery

Spatial resolution of the fs-ablation process

Cancer Drug Monitoring on a Single Cell Level

High-content Raman Setup for Automated Single Cell Analysis

Features:

- ▶ 785 nm excitation
- Changing between upright and inverted microscope in 30 min.
- Conventional Raman Imaging
- Line-Raman Imaging
- Rapid Mean Spectra Acquisition
- Automated Data Acquisition
- Low-Resolution Raman
 Spectroscopy

INIVERSITAT LEIDNIZ

Development of a Raman-based viability assay

Test system: Doxorubicin (DOX)14 and THP-1 cells (monocytic acute myeloid leukemia cell line)

- Changes can be observed in a drug-dependent manner
- Principal component analysis combined with support vector machine (PCA-SVM)
- Decision boundary indicates the difference between viable and non-viable cells

A. S. Mondol et al. Scientific Reports, 9, 12653 (2019).

Comparison Raman-based and trypan blue based prediction of viable cells

	Batch 1		Batch 2	
	Raman Results in %	Clinical Results in %	Raman Results in %	Clinical Results in %
Control	83	82	98	99
0.05 um	73	78	69	70
0.1 um	70	69	52	59
0.5 um	62	59	30	32
1.0 um	52	47	21	13
Control	82	87	96	95

Raman provides comparable results for cell-viability as conventional approaches

 Other drugs, e.g. panitimumab (monoclonal antibodies), Dithiothreitol (DTT), erlotinib, nanoparticle induced cytotoxicity

A. S. Mondol et al. Scientific Reports, 9, 12653 (2019).

High content Raman spectroscopic analysis of Panitumumab exposed to colorectal cancer cells

Mondol et al., Analyst, 2019, 144, 6098.

Thanks

Die Förderbank.

HORIZON 2020

Bundesministerium für Bildung und Forschung

Freistaat 🛒

EUROPA FÜR THÜRINGEN

Thüringen 😅

Ministerium für Wirtschaft, Wissenschaft und Digitale Gesellschaft

STIFT /

Stiftung für Technologie, Innovation und Forschung

Thüringen

Leibniz-Gemeinscha

Thüringen mbH

SEVENTH FRAMEWORK PROGRAMME

DAAD

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

Carl Zeiss Stiftung

EUROPÄISCHER FONDS FÜR REGIONALE ENTWICKLUNG

Thanks to our Cooperation Partners

University Hospital Jena, Germany:

Prof. A. Stallmach, Prof. Dr. O. Guntinas-Lichius, Prof. Dr. F. v. Eggeling, Dr. G. Ernst, Prof. Dr. M. Kiehntopf, Prof. Dr. M. Bauer, Prof. Dr. B. Löffler

University Hospital Erlangen, Germany:

Prof. Dr. M. F. Neurath, Prof. Dr. M. Waldner, Prof. Dr. M. Vieth, Prof. Dr. Dr. O. Friedrich

Friedrich-Schiller University Jena, Institute of Applied Physics:

Prof. Dr. A. Tünnermann, Prof. Dr. J. Limpert

University of Konstant, Germany:

Prof. Dr. Andreas Zumbusch, P. Zirak

INP Greifswald

Prof. Dr. T. von Woedtke, Prof. Dr. K.D. Weltmann

University Hospital Dresden, Germany:

Prof. Dr. M. Kirsch, Dr. R. Galli, Dr. O. Uckermann

MU Wien:

Prof. Dr. R. Leitgeb, Prof. Dr. W. Drexler

GRINTECH GmbH:

Dr. B. Messerschmidt, Dr. G. Matz

Department of Urology (Copenhagen Unversity) : Prof. Dr. G. Gregers

TUD Prof. Dr. P.E. Anderson

University Freiburg: Prof. Dr. H. Zappe

Leibniz ipht C

